STEM CELL SOCIETY

(A National Association of Stem Cell Therapists)

Registration No: guj/2176/gandhinagar

Proposed as “Stem Cell Society of India“

Publications International

1. Freitas BC, Trujillo CA, Carromeu C, Yusupova M, Herai RH, Muotri AR. Stem cells and modeling of autism spectrum disorders. Exp Neurol. 2014 Oct;260:33-43.

2. Lv YT, Zhang Y, Liu M, Qiuwaxi JN, Ashwood P, et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med. 2013; 11: 196

3. Yoo J, Kim HS, Hwang DY. Stem cells as promising therapeutic options for neurological disorders. J Cell Biochem. 2013; 114: 743-753.

4. Balami JS, Fricker RA, Chen R. Stem cell therapy for ischaemic stroke:  translation from preclinical studies to clinical treatment. CNS Neurol Disord Drug Targets. 2013 Mar;12(2):209-19.

5. Dulamea AO. The potential use of mesenchymal stem cells in stroke therapy-From bench to bedside. J Neurol Sci. 2015 Mar 18

6. Hilgendorf I, Greinix H, Halter JP, Lawitschka A, Bertz H, Wolff D. Long-Term  Follow-up After Allogeneic Stem Cell Transplantation. Dtsch Arztebl Int. 2015 Jan 23;112(4):51-8.

7. Vishwakarma SK, Bardia A, Tiwari SK, Paspala SA, Khan AA. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. J Adv Res. 2014 May;5(3):277-94 Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther. 2015  Apr;21(4):337-47.

8. Wanamaker CP, Fakhran S, Alhilali LM. Qualitative and Quantitative Analysis of MR Imaging Findings in Patients with Middle Cerebral Artery Stroke Implanted with Mesenchymal Stem Cells. AJNR Am J Neuroradiol. 2015 Feb 5. [Epub ahead of print]

9. Wang T, Choi E, Monaco MC, Major EO, Medynets M, Nath A. Direct induction of human neural stem cells from peripheral blood hematopoietic progenitor cells. J Vis Exp. 2015 Jan 28;(95):52298.

10. Jeong H, Yim HW, Cho YS, Kim YI, Jeong SN, Kim HB, Oh IH. Efficacy and safety  of stem cell therapies for patients with stroke: a systematic review and single arm meta-analysis. Int J Stem Cells. 2014 Nov;7(2):63-9

11. M. Song, O.Mohamad, X. Gu, L.Wei, and S. P. Yu, “Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice,” Cell Transplantation, vol. 22, no. 11, pp. 2001– 2015, 2013.

12. X.-M. Zhang, F. Du, D. Yang et al., “Transplanted bone marrow stem cells relocate to infarct penumbra and co-express endogenous proliferative and immature neuronal markers in a mouse model of ischemic cerebral stroke,” BMC Neuroscience, vol. 11,  article no. 138, 2010. C. V.

13. Borlongan, L. E.Glover,N.Tajiri,Y.Kaneko, andT.B.Freeman, “The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders,” Progress in Neurobiology, vol. 95, no. 2, pp. 213–228, 2011.

14. P. Dharmasaroja, “Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke,” Journal of Clinical Neuroscience, vol. 16, no. 1, pp. 12–20, 2009

15. D. C.Hess and C.V. Borlongan, “Cell-based therapy in ischemic stroke,” Expert Review of Neurotherapeutics, vol. 8, no. 8, pp. 1193–1201, 2008.

16. D. C. Hess and C. V. Borlongan, “Stem cells and neurological diseases,” Cell Proliferation, vol. 41, no. 1, pp. 94–114, 2008

17. L. Zhao, W. Duan, M. Reyes, C. D. Keene, C. M. Verfaillie, andW. C. Low, “Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats,” Experimental Neurology, vol. 174, no. 1, pp. 11–20, 2002.

18.  W. C. Shyu, S. Z. Lin, M. F. Chiang, C. Su, and H. Li, “Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing 𝛽1 integrin-mediated angiogenesis in chronic stroke rats,”TheJournal ofNeuroscience, vol. 26, no. 13, pp. 3444–3453, 2006.

19.  N. Pavlichenko, I. Sokolova, S. Vijde et al., “Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats,” Brain Research, vol. 1233, pp. 203–213, 2008.

20.  J. Chen, Z. G. Zhang, Y. Li et al., “Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats,” Circulation Research, vol. 92, no. 6, pp. 692–699, 2003.

21.  Y. Li, J. Chen, L. Wang, M. Lu, and M. Chopp, “Treatment of stroke in rat with intracarotid administration of marrow stromal cells,” Neurology, vol. 56, no. 12, pp. 1666–1672, 2001.

22.  S. Jeong, K. Chu, K. Jung, S. U. Kim, M. Kim, and J. Roh, “Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage,” Stroke, vol. 34, no. 9, pp. 2258–2263, 2003.

23.  D.C.Hess, W. D. Hill, A. Martin-Studdard, J.Carroll, J. Brailer, and J. Carothers, “Bone marrow as a source of endothelial cells andNeuN-expressing cells after stroke,” Stroke, vol. 33,no. 5, pp. 1362–1368, 2002.

24.  O. Y. Bang, J. S. Lee, P. H. Lee, and G. Lee, “Autologous mesenchymal stem cell transplantation in stroke patients,” Annals of Neurology, vol. 57, no. 6, pp. 874–882, 2005.

25.  J. S. Lee, J. M. Hong, G. J. Moon, P. H. Lee, Y. H. Ahn, and O. Y. Bang, “A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke,” Stem Cells, vol. 28, no. 6, pp. 1099–1106,2010.

26. J. Chen and M. Chopp, “Neurorestorative treatment of stroke: cell and pharmacological approaches,” NeuroRx, vol. 3, no. 4, pp. 466–473, 2006.

27.  A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, “Neuronal replacement from endogenous precursors in the adult brain after stroke,” Nature Medicine, vol. 8, no. 9, pp. 963– 970, 2002.

28.  M. Dezawa, M. Hoshino, Y. Nabeshima, and C. Ide, “Marrow stromal cells: Implications in health and disease in the nervous system,” Current Molecular Medicine, vol. 5, no. 7, pp. 723–732, 2005.

29.  J. Chen, Y. Li, L.Wang et al., “Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats,” Stroke, vol. 32, no. 4, pp. 1005–1011, 2001.

30.  L. H. Shen, Y. Li, J. Chen et al., “Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke,” Journal of Cerebral Blood Flow andMetabolism, vol. 27, pp. 6–11, 2006.

31. A.Mahmood, D. Lu, M. Lu et al., “Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells,” Neurosurgery, vol. 53, no. 3, pp. 697–703, 2003

32. B. Steiner,M. Roch, N. Holtkamp, and A. Kurtz, “Systemically administered human bonemarrow-derivedmesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia,” Neuroscience Letters, vol. 513, no. 1, pp. 25–30, 2012.

33. H. C.Park, Y. S. Shim, Y. Ha et al., “Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor,” Tissue Engineering, vol. 11,no. 5-6, pp. 913–922, 2005.

34. M. M. Daadi, A. S. Davis, A. Arac et al., “Human neural stem cell graftsmodify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury,” Stroke, vol. 41, no. 3, pp. 516–523, 2010.

35. M. Brenneman, S. Sharma, M. Harting et al., “Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 1, pp. 140–149, 2010.

36. S. Q. Qu, Z. Luan, G. C. Yin et al., “Transplantation of human fetal neural stem cells into cerebral ventricle of the neonatal rat following hypoxic-ischemic injury: survival, migration and differentiation,” Zhonghua Er Ke Za Zhi, vol. 43, no. 8, pp. 576– 579, 2005.

37.  A. Chen, B. Siow, A. M. Blamire, M. Lako, and G. J. Clowry, “Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury,” Stem Cell Research, vol. 5, no. 3, pp. 255–266, 2010.

38. K. Rosenkranz, S. Kumbruch, M. Tenbusch et al., “Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats,” Cell and Tissue Research, vol. 348, no. 3, pp. 429–438, 2012.

39. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min BH, Kim EY, Choi BH, Park H, Ha Y (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 25(8):2066–2073

40. Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10(1):106 Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental neurology 174(1):11–20

41. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY, STARTING collaborators (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28(6):1099–1106

42. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40:609–619 Peter R, Chen Z (2002) Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51(4):1043–1054

43. Hsu YC, Chen SL, Wang DY, Chiu IM (2013) Stem cell-based therapy in neural repair. Biomed J 36(3):98–105

44. Torrente Y, Tremblay JP, Pisati F et al: Intra arterial injection of muscle-de¬rived CD34 (+) Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol, 2001; 152(2): 335–48

45. Ferrari G, Mavilio F: Myogenic stem cells from the bone marrow: a ther¬apeutic alternative for muscular dystrophy? Neuromuscul Disord, 2002; 12(Suppl.1): S7–10

46. Song S, Song S, Zhang H et al: Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neu¬ral stem cells. Stem Cells Dev, 2007; 16(5): 747–56

 

47. Luo L, Zhou HY: Co-transplantation of myoblasts and Schwann cells in the therapy of Duchenne muscular dystrophy. Sichuan Da XueXueBao Yi Xue Ban, 2011; 42(1): 101–5

48. Y. Akiyama, C. Radtke, and J. D. Kocsis, “Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells,” Journal of Neuroscience, vol. 22, no. 15, pp. 6623– 6630, 2002.

49. A.Mahmood, D. Lu, M. Lu et al., “Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells,” Neurosurgery, vol. 53, no. 3, pp. 697–702, 2003.

50. J.W.Mcdonald,X.-Z. Liu, Y. Qu et al., “Transplantedembryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord,” Nature Medicine, vol. 5, no. 12, pp. 1410–1412, 1999.

51. Y. Ogawa, K. Sawamoto, T.Miyata et al., “Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats,” Journal of Neuroscience Research, vol. 69, no. 6, pp. 925–933, 2002.

52. B. J. Cummings, N. Uchida, S. J. Tamaki et al., “Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 14069–14074, 2005.

53. Akiyama, Y., Radtke, C., Kocsis, J. D. (2002) “Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells,” J. Neurosci, 22(15), 6623-6630.

54. Chopp, M., Zhang, X. H., Li, Y., Wang, L., Chen, J., Lu, D., et al. (2000) “Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation,” Neuroreport.

55. Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. Journal of Neuroscience Research, 2009; 87(10): 2183–2200

56. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11 20.

57. Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentís J, Sánchez A, García- Sancho J. Treatment of Knee Osteoarthritis With Autologous Mesenchymal Stem Cells: A Pilot Study. Transplantation. 2013 ;95(12):1535-1541.

58. Dobrowolski S, Lepski G. Stem cells in traumatic brain injury. Am. J. Neurosci 2013; 4: 13-24.

59. Kim M, Kim I, Lee SK, Bang SI, Lim SY. Clinical trial of autologous differentiated adipocytes from stem cells derived from human adipose tissue. Dermatol Surg. 2011;37(6):750-9.

60. Nakama K, Choi SW, Yang PS, Song KC, Ko MS, Jo JY, Ra JC. Therapy of autologous human adipose tissue-derived mesenchymal stem cells for the cerebral palsy: a case report. 2012; 1(1)

61. Lim JY, Jeong CH, Jun JA, Kim SM, Ryu CH, Hou Y, Oh W, Chang JW, Jeun SS. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia.Stem Cell Res Ther. 2011;2(5):38.

62. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 2003, 183:355-366

63. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK. Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke. 2010;41(3): 516-23

64. Wasielewski B, Jensen A, Roth-Härer A, Dermietzel R, Meier C. Neuroglial activation and Cx43 expression are reduced upon transplantation of human umbilical cord blood cells after perinatal hypoxic-ischemic injury. Brain Res. 2012;1487:39-53

65. Meier C, Middelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, Gantert M, Dinse HR, Dermietzel R, Jensen A. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res. 2006;59(2):244-9.

66. Geissler M, Dinse HR, Neuhoff S, Kreikemeier K, Meier C. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex. PLoS One. 2011;6(6):e20194.

67.  Pimentel-Coelho PM, Magalhães ES, Lopes LM, deAzevedo LC, Santiago MF, Mendez- Otero R. Human cord blood transplantation in a neonatal rat model of hypoxicischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev. 2010;19(3):351-8.

68. Tanaka N, Kamei N, Nakamae T, Yamamoto R, Ishikawa M, Fujiwara H, Miyoshi H, Asahara T, Ochi M, Kudo Y. CD133+ cells from human umbilical cord blood reduce cortical damage and promote axonal growth in neonatal rat organ co-cultures exposed to hypoxia. Int J Dev Neurosci. 2010;28(7):581-7.

69. Qu SQ, Luan Z, Yin GC, Guo WL, Hu XH, Wu NH, Yan FQ, Qian YM. Transplantation of human fetal neural stem cells into cerebral ventricle of the neonatal rat following hypoxic-ischemic injury: survival, migration and differentiation. Zhonghua Er Ke Za Zhi. 2005;43(8):576-9.

70. Chen A, Siow B, Blamire AM, Lako M, Clowry GJ. Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Res. 2010;5(3):255-66.

71. Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, Deans RJ, Hess DC, Carroll JE, Borlongan CV. Behavioral and histological characterization of intrahippocampal grafts of human bone marrow-derived multipotent progenitor cells in neonatal rats with hypoxic-ischemic injury. Cell Transplant. 2006;15(3):231-8.

72. Webber DJ, van Blitterswijk M, Chandran S. Neuroprotective effect of oligodendrocyte precursor cell transplantation in a long-term model of periventricular leukomalacia. Am J Pathol. 2009;175(6):2332-42

73. Luan Z, Liu W, Qu S, Du K, He S, Wang Z, Yang Y, Wang C, Gong X. Effects of neural progenitor cell transplantation in children with severe cerebral palsy. Cell Transplant. 2012; 21 Suppl 1:S91-8.

74. Chen G, Wang Y, Xu Z, Fang F, Xu R, Wang Y, Hu X, Fan L, Liu H. Neural stem cell like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013;11:21.

75.  Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, Jang SJ, Kim SH, Oh D, Kim MK, Kim SS, Kim M. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581-91.

76. Papadopoulos KI, Low SS, Aw TC, Chantarojanasiri T. Safety and feasibility of autologous umbilical cord blood transfusion in 2 toddlers with cerebral palsy and the role of low dose granulocyte-colony stimulating factor injections. Restor Neurol Neurosci. 2011; 29(1): 17-22.

77. Li M, Yu A, Zhang F, Dai G, Cheng H, Wang X, An Y. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells. J Transl Med. 2012;10:100.

78. Jensen A, Hamelmann E. First autologous cell therapy of cerebral palsy caused by hypoxic-ischemic brain damage in a child after cardiac arrest-individual treatment with cord blood. Case Rep Transplant. 2013;2013:951827.

79. Wang L, Ji H, Zhou J, Xie J, Zhong Z, Li M, Bai W, Li N, Zhang Z, Wang X, Zhu D,  Liu Y, Wu M. Therapeutic potential of umbilical cord mesenchymal stromal cells transplantation for cerebral palsy: a case report. Case Rep Transplant. 2013;2013:146347

80. Bittner, R. E.; Schofer, C.; Weipoltshammer, K.; Ivanova, S.; Streubel B.; Ivanova, S.; Streubel, B.; Hauser, E.; Freilinger, M.; Höger, H.; Elbe-Bürger, A.; Wachtler, F. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. 199(5):391–396; 1999.

81. Mafi, R.; Hindocha, S.; Mafi, P.; Griffin, M.; Khan, W. S. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications—A systematic review of the literature. Open Orthop. J. 5 (2):242–248; 2011.

82. Skuk, D.; Roy, B.; Goulet, M.; Chapdelaine, P.; Bouchard, J. P.; Roy, R.; Dugré, F. J.; Lachance, J. G.; Deschênes, L.; Hélène, S.; Sylvain, M.; Tremblay, J. P. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol. Ther. 9:475–482; 2004

83. Yang, X. F.; Xu, Y. F.; Zhang, Y. B. Functional improvement of patients with progressive muscular dystrophy by bone marrow and umbilical cord blood mesenchymal stem celltransplantations. Zhonghua Yi Xue Za Zhi. 89(36):2552–2556; 2009.

84. Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B. Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine (Phila Pa 1976). 2009;34:328–334.

85. Carvalho KA, Cunha RC, Vialle EN, et al. Functional outcome of bone marrow stem cells (CD45(+)/CD34(-)) after cell therapy in acute spinal cord injury: in exercise training and in sedentary rats. Transplant Proc. 2008;40:847–849.

86. Saito F, Nakatani T, Iwase M, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008;64:53–59.

87. Gabr H, Ghannam O, Awad MR, von Wild K, El-Kheir WA, Ewes I. Autologous mesenchymal stem cell therapy for spinal cord injury: long term safety and clinical efficacy. Am J Neuroprot Neuroregen. 2011;3:100–106.

88.  Zhou XH, Ning GZ, Feng SQ, et al. Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant. 2012;21: S39–S47.

89.  Ohta M, Suzuki Y, Noda T, et al. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol. 2004;187:266–278.

90. Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A, Toyama Y. Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol. 2003;14:191–198.

91.  Schultz SS. Adult stem cell application in spinal cord injury. Curr Drug Targets. 2005;6:63–73.

92. K. Moazzami, R. Majdzadeh, and S. Nedjat, “Local intramuscular transplantation of autologous mononuclear cells for critical lower limb ischemia,” Cochrane Database of Systematic Reviews, no. 12, Article ID CD008347, 2011.

93. D. I. Jung, J. Ha, B. T. Kang et al., “A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury,” Journal of the Neurological Sciences, vol. 285, no. 1-2, pp. 67–77, 2009]

94. Samuil S. Rabinovich, Victor I. Seledtsov, Olga V. Poveschenko. Transplantation Treatment Of Spinal Cord Injury Patients. Biomedicine & Pharmacotherapy. 2003; 57(9):428-433

95. Ha Y, Yoon SH, Park SR, Cho YE, Yoon DH, Park HC.Treatment of Complete Spinal Cord Injury Patients Receiving Autologous Bone Marrow Cell Transplantation and Bone Marrow Stimulation with Granulocyte Macrophage-Colony Stimulating Factor -Report of Three Cases. J Korean Neurosurg Soc 2004 35: 459-464.

96. Feron F, Perry, C, Cochrane, J, Licina, P et alAutologous Olfactory Ensheathing Cell Transplantation In Human Spinal Cord Injury. Brain 2005;128(Pt 12):2951-60.

97. Hyung Chun Park, Yoo Shik Shim, Yoon Ha et al. Treatment of Complete Spinal Cord Injury Patients by Autologous Bone Marrow Cell Transplantation and Administration of Granulocyte-Macrophage Colony Stimulating Factor. Tissue Engineering. 2005, 11(5-6): 913-922.

98. Eva Syková, Aleš Homola, Radim Mazanec et al Autologous Bone Marrow Transplantation in Patients With Subacute and Chronic Spinal Cord Injury. Cell Transplantation. 2006;15:1–100

99. Moviglia GA, Fernandez Viña R, Brizuela JA.et al.Combined Protocol Of Cell Therapy For Chronic Spinal Cord Injury. Report On The Electrical And Functional Recovery Of Two Patients. Cytotherapy. 2006; 8(3):202-9.

100. R. Chernykh, V. V. Stupak, G. M.Muradov et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bulletin of Experimental Biology and Medicine,. 2007;143(4):543–547

101. H. Saberi, P. Moshayedi, H.-R. Aghayan et al.Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neuroscience Letters.2008; 443(1) :46–50.

102. Deda H, Inci MC, Kürekçi AE, Kayihan K, Ozgün E, Ustünsoy GE, Kocabay S. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up.  Cytotherapy. 2008;10(6):565-74.

103. L. F. Geffner, P. Santacruz, M. Izurieta et al Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury Patients Via Multiple Routes Is Safe and Improves Their Quality of Life: Comprehensive Case Studies. Cell Transplantation. 2008 ;17:1277–1293

104. F. Cristante, T. E. P. Barros-Filho, and T. E. P. Barros-Filho. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord. 2009;47(10):733–738

105. Lima, P. Escada, J. Pratas-Vital et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair. 2010 ;24(1):10-22.

106. Abdelaziz, Osama S.; Marie, Ahmed; Abbas, Mohamed; Ibrahim, Mohamed; Gabr, Hala Feasibility, Safety, and Efficacy of Directly Transplanting Autologous Adult Bone Marrow Stem Cells in Patients With Chronic Traumatic Dorsal Cord Injury: A Pilot Clinical Study. Neurosurgery Quarterly:  2010 ; 20 ( 3): 216-226.

107. Carlos Lima, José Pratas-Vital,  Pedro Escada,  Armando Hasse-Ferreira,  Clara Capucho, and Jean D Peduzzi, Olfactory Mucosa Autografts in Human Spinal Cord Injury: A Pilot Clinical Study.J Spinal Cord Med. 2006; 29(3): 191–203.

108. A. Mackay-Sim, F. Féron,J. Cochrane, L. Bassingthwaighte,C. Bayliss, W. Davies, et al .Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008 September; 131(9): 2376–2386.

109. Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, Kim YJ, Jo JY, Yoon EJ, Choi HJ, Kwon E.Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011 Aug;20(8):1297-308.

110. Frolov AA, Bryukhovetskiy AS. Effects of Haematopoietic Autologous Stem Cell Transplantation To The Chronically Injured Human Spinal Cord Evaluated By Motor and Somatosensory Evoked Potentials Methods. Cell Transplantation, Vol. 21, Supplement 1, pp. S49–S55, 2012

111. Zhou, Xian-Hu; Ning, Guang-Zhi; Feng, Shi-Qing; Kong, Xiao-Hong; Chen, Jia-Tong; Zheng, Yong-Fa; Ban, De-Xiang; Liu, Tao; Li, Hui; Wang, Pei. Transplantation of Autologous Activated Schwann Cells in the Treatment of Spinal Cord Injury: Six Cases, More Than Five Years of Follow-up.Cell Transplantation, Volume 21, Supplement 1, 2012 , pp. S39-S47(9)

112. Hongyun Huang, Haitao Xi; Lin Chen; Feng Zhang; Yancheng Liu. Long-Term Outcome of Olfactory Ensheathing Cell Therapy for Patients With Complete Chronic Spinal Cord Injury. Cell Transplantation. Volume 21, Issue S1, pages S23-S31

113. Attar A, Ayten M, Ozdemir M, Ozgencil E, Bozkurt M, Kaptanoglu E, Beksac M, Kanpolat Y. An attempt to treat patients who have injured spinal cords with intralesional implantation of concentrated autologous bone marrow cells. Cytotherapy. 2011 Jan;13(1):54-60.

114. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R, Marder JB, Yoles E, Belkin M, Schwartz M, Hadani M. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results.J Neurosurg Spine. 2005 Sep;3(3):173-81.

115. Gabr, Hala; Ghannam, Osama; Awad, Mohamed Reda; von Wild, Klaus; El-Kheir, Wael Abo; Ewes, Ibrahim. Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury: Long Term Safety and Clinical Efficacy American Journal of Neuroprotection and Neuroregeneration, 2011; 3(1):100-106(7)

116. Callera and R. X. do Nascimento. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol. 2006 Feb;34(2):130-1.

117. Siniscalco D, Sapone A, Cirillo A, Giordano C, Maione S, Antonucci N.  Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future? J Biomed Biotechnol. 2012;2012:480289.

118. Thomas E Ichim, Fabio Solano, Eduardo Glenn, et al Stem Cell Therapy for Autism. Journal of Translational Medicine 2007, 5:30

119. Siniscalco D, Bradstreet JJ, Antonucci N (2012) The Promise of Regenerative Medicine and Stem Cell Research for the Treatment of Autism. J Regen Med 1:1.

120. Siniscalco D .Stem Cell Research: An Opportunity for Autism Spectrum Disorders Treatment. Autism 2012; 2:e106.

121. Sohn RL, Gussoni E. Stem cell therapy for muscular dystrophy. Expert Opin Biol Ther. 2004 ;4(1):1-9.

122. Yang XF, Xu YF, Zhang YB et al. Functional improvement of patients with progressive muscular dystrophy by bone marrow and umbilical cord blood mesenchymal stem cell transplantations. Zhonghua Yi Xue Za Zhi. 2009;89(36):2552-6.

123. Chad Markert,  Anthony Atala, et al. Mesenchymal Stem Cells: Emerging Therapy for Duchenne Muscular Dystrophy. PM R. 2009 June ; 1(6): 547–559.

124. Kimi Y. Kong, Jingmei Ren, Morey Kraus, et al Human Umbilical Cord Blood Cells Differentiate into Muscle in sjl Muscular Dystrophy Mice. Stem Cells 2004;22:981–993

125. Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O, Villarreal-Martínez L, Jaime-Pérez JC, García-Rodríguez F, et al. Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase  I trial. Cytotherapy. 2014 Jun;16[6]:810-20

126. Chen G, Wang Y, Xu Z, et al. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013; 26; 11:21.

127. Wang X, Cheng H, Hua R, et al. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy. 2013, 15[12]:1549-62.

128. Newcomb JD, Willing AE, Sanberg PR. Umbilical cord blood cells. Methods Mol Biol. 2009;549:119-36

129. Chik KW, Chan PK, Li CK, et al. Human herpesvirus-6 encephalitis after unrelated umbilical cord blood transplant in children. Bone Marrow Transplantation. 2002;99:991–994

130. El-Cheikh J, Fürst S, Casalonga F, Crocchiolo R, Castagna L, et al. JC Virus Leuko-Encephalopathy in Reduced Intensity Conditioning Cord Blood Transplant Recipient with a Review of the Literature. Mediterr J Hematol Infect Dis. 2012;4[1]:e2012043

131. Jensen A, Hamelmann E. First autologous cell therapy of cerebral palsy caused by hypoxic-ischemic brain damage in a child after cardiac arrest-individual treatment with cord blood. Case Rep Transplant. 2013;2013:951827.

132. Wang L, Ji H, Zhou J, Xie J, Zhong Z, Li M, Bai W, Li N, Zhang Z, Wang X, Zhu  D, Liu Y, Wu M. Therapeutic potential of umbilical cord mesenchymal stromal cells transplantation for cerebral palsy: a case report. Case Rep Transplant. 2013;2013:146347

133. Luan Z, Liu W, Qu S, Du K, He S, Wang Z, Yang Y, Wang C, Gong X. Effects of neural progenitor cell transplantation in children with severe cerebral palsy. Cell Transplant. 2012; 21 Suppl 1:S91-8.

134. Chen G, Wang Y, Xu Z, Fang F, Xu R, Wang Y, Hu X, Fan L, Liu H. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013;11:21.

135. Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, Jang SJ, Kim SH, Oh D, Kim MK,  Kim SS, Kim M. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31[3]:581-91.

136. Huang H, Chen L, Xi H, et al. Olfactory ensheathing cells transplantation for central nervous system diseases in 1,255 patients. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2009; 23[1]:14-20.

137. Li M, Yu A, Zhang F, Dai G, Cheng H, Wang X, An Y. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells. J Transl Med. 2012 May 18;10:100.

138. Fernando Ramirez, David A. Steenblock, Anthony G. Payne and Lyn Darnall. Umbilical Cord Stem Cell Therapy For Cerebral Palsy. Med Hypotheses Res 2006; 3: 679-686.

139. Lin Chen, Hongyun Huang, Haitao Xi et al. Intracranial Transplant of Olfactory Ensheathing Cells in Children and Adolescents With Cerebral Palsy: A Randomized Controlled Clinical Trial. Cell Transplantation, 2010; 19:185–191.

140. V. I. Seledtsov, M. Yu. Kafanova, S. S. Rabinovich et al. Cell Therapy of Cerebral Palsy. Cell Technologies in Biology and Medicine, Vol. 1, No. 2, April, 2005. pp.  84-88

 

Address For Correspondence: Unit No 10, Andheri Industrial Estate, Off Veera Desai Road, Andheri West,

Mumbai – 400053, India.

Tel. +91 9820526618 | Email:- stemcellsocietyofindia@gmail.com